Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118640, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479720

RESUMO

The effects of long-term ammunition pollution on microecological characteristics were analyzed to formulate microbial remediation strategies. Specifically, the response of enzyme systems, N/O stable isotopes, ion networks, and microbial community structure/function levels were analyzed in long-term (50 years) ammunition-contaminated water/sediments from a contamination site, and a compound bacterial agent capable of efficiently degrading trinitrotoluene (TNT) while tolerating many heavy metals was selected to remediate the ammunition-contaminated soil. The basic physical and chemical properties of the water/sediment (pH (up: 0.57-0.64), nitrate (up: 1.31-4.28 times), nitrite (up: 1.51-5.03 times), and ammonium (up: 7.06-70.93 times)) were changed significantly, and the significant differences in stable isotope ratios of N and O (nitrate nitrogen) confirmed the degradability of TNT by indigenous microorganisms exposed to long-term pollution. Heavy metals, such as Pb, Zn, Cu, Cd, Cs, and Sb, have synergistic toxic effects in ammunition-contaminated sites, and significantly decreased the microbial diversity and richness in the core pollution area. However, long-term exposure in the edge pollution area induced microorganisms to use TNT as a carbon and nitrogen sources for life activities and growth and development. The Bacteroidales microbial group was significantly inhibited by ammunition contamination, whereas microorganisms such as Proteobacteria, Acidobacteriota, and Comamonadaceae gradually adapted to this environmental stress by regulating their development and stress responses. Ammunition pollution significantly affected DNA replication and gene regulation in the microecological genetic networks and increased the risk to human health. Mg and K were significantly involved in the internal mechanism of microbial transport, enrichment, and metabolism of TNT. Nine strains of TNT-utilizing microbes were screened for efficient TNT degradation and tolerance to typical heavy metals (copper, zinc and lead) found in contaminated sites, and a compound bacterial agent prepared for effective repair of ammunition-contaminated soil significantly improved the soil ecological environment.

2.
Environ Sci Pollut Res Int ; 30(54): 116227-116238, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37907824

RESUMO

2,4,6-trinitrotoluene (TNT) is a nitroaromatic compound that causes soil and groundwater pollution during manufacture, transportation, and use, posing significant environmental and safety hazards. In this study, a TNT-degrading strain, Bacillus cereus strain T4, was screened and isolated from TNT-contaminated soil to explore its degradation characteristics and proteomic response to TNT. The results showed that after inoculation with the bacteria for 4 h, the TNT degradation rate reached 100% and was transformed into 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT), and 2,6-diamino-4-nitrotoluene (2,6-DANT), accompanied by the accumulation of nitrite and ammonium ions. Through proteomic sequencing, we identified 999 differentially expressed proteins (482 upregulated, 517 downregulated), mainly enriched in the pentose phosphate, glycolysis/gluconeogenesis, and amino acid metabolism pathways. In addition, the significant upregulation of nitroreductase and N-ethylmaleimide reductase was closely related to TNT denitration and confirmed that the strain T4 converted TNT into intermediate metabolites such as 2-ADNT and 4-ADNT. Therefore, Bacillus cereus strain T4 has the potential to degrade TNT and has a high tolerance to intermediate products, which may effectively degrade nitroaromatic pollutants such as TNT in situ remediation in combination with other bacterial communities.


Assuntos
Trinitrotolueno , Trinitrotolueno/metabolismo , Proteômica , Nitrorredutases/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Solo
3.
Huan Jing Ke Xue ; 44(3): 1657-1667, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922226

RESUMO

Heavy metal pollution in testing ranges is one of the most widely concerning environmental problems. The ammunition static detonation test area, the bomb falling area, and the living area of a testing range in Jilin were selected as the study objects. The contents of heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) in 112 topsoil samples and two soil profiles were analyzed, and their distribution characteristics and sources were analyzed in detail. After that, the pollution degree and potential ecological risk of heavy metals were investigated using multiple pollution index assessment methods. The results showed that the average contents of As, Cd, Cu, Ni, and Zn in the soil of the ammunition static detonation test area were higher than the soil background values in Jilin province, and the contents of Cu, Zn, As, and Cd showed strong spatial heterogeneity. The average concentrations of As, Cd, and Ni in the soil of the bomb falling area exceeded their background values. The average contents of As and Cd in the soil of the living area were higher than the background values, and the variation coefficients of Pb, Cd, Zn, and Cr were relatively high, indicating that they may have been affected by human activities. In different test areas, the contents of As, Cr, Cu, Ni, and Zn in the soil samples were significantly different (P<0.05). The ammunition static detonation test area was more strongly affected by the test activities than the bomb falling area, and the heavy metal contents in the surface layer of the soil profile were significantly higher. There was no obvious vertical migration of heavy metals in the soil profiles. The results of multivariate statistics and source identification analysis using absolute principal component score-multiple linear regression (APCS-MLR) showed that Zn, Pb, and Cd were mainly affected by pollution sources related to test activities; Cr and Ni were mainly affected by natural sources of soil forming materials; and the sources of As and Cu were more complicated. The geo-accumulation index showed that Cd in the three areas and Ni in the bomb falling area belonged to pollution level 1 (uncontaminated to moderately contaminated). The Nemerow comprehensive pollution index showed that the pollution levels among the different functional areas were:living area>ammunition static detonation test area>bomb falling area, and the three functional areas were slightly polluted. The potential ecological risk index showed that the study area was at moderate ecological risk level, and Cd was considered to be the main soil pollution factor.

4.
Chemosphere ; 281: 130842, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34023765

RESUMO

The aim of this study was to reveal the mechanism underlying the toxicity of TNT (trinitrotoluene), RDX (cyclotrimethylene trinitroamine), and HMX (cyclotetramethylene tetranitramine) explosives pollution in plants. Here, the effects of exposure to these three explosives were examined on chlorophyll fluorescence, antioxidant enzyme activity, and the metabolite spectrum in alfalfa (Medicago sativa) plants. The degradation rates for TNT, RDX, and HMX by alfalfa were 26.8%, 20.4%, and 18.4%, respectively, under hydroponic conditions. TNT caused damage to the microstructure of the plant roots and inhibited photosynthesis, whereas RDX and HMX induced only minor changes. Exposure to any of the three explosives caused disturbances in the oxidase system. Non-targeted metabolomics identified a total of 6185 metabolites. TNT exposure induced the appearance of 609 differentially expressed metabolites (189 upregulated, 420 downregulated), RDX exposure induced 197 differentially expressed metabolites (155 upregulated and 42 downregulated), and HMX induced 234 differentially expressed metabolites (132 upregulated and 102 downregulated). Of these differentially expressed metabolites, lipids and lipid-like molecules were the main metabolites induced by explosives poisoning. TNT mainly caused significant changes in the alanine, aspartate, and glutamate metabolism metabolic pathways, RDX mainly caused disorders in the arginine biosynthesis metabolic pathway, and HMX disrupted the oxidative phosphorylation metabolic pathway. Taken together, the results show that exposure to TNT, RDX, and HMX leads to imbalances in plant photosynthetic characteristics and antioxidant enzyme systems, changes the basic metabolism of plants, and has significant ecotoxicity effects.


Assuntos
Trinitrotolueno , Azocinas , Medicago sativa , Triazinas , Trinitrotolueno/toxicidade
5.
J Environ Manage ; 288: 112247, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765573

RESUMO

This study aims to reveal the biodegradation and interaction mechanism of cyclotetramethylenete-tranitramine (HMX) by a newly isolated bacteria. In this study, a bacterial strain (Bacillus aryabhattai) with high efficiency for HMX degradation was used as the test organism to analyze the changes in growth status, cell function, and mineral metabolism following exposure to different stress concentrations (0 and 5 mg L-1) of HMX. Non-targeted metabonomics was used to reveal the metabolic response of this strain to HMX stress. The results showed that when the HMX concentration was 5 mg L-1, the removal rate of HMX within 24 h of inoculation with Bacillus aryabhatta was as high as 90.5%, the OD600 turbidity was 1.024, and the BOD5 was 225 mg L-1. Scanning electron microscope (SEM) images showed that the morphology of bacteria was not obvious Variety, Fourier transform infrared spectroscopy (FTIR) showed that the cell surface -OH functional groups drifted, and ICP-MS showed that the cell mineral element metabolism was disturbed. Non-targeted metabonomics showed that HMX induced the differential expression of 254 metabolites (133 upregulated and 221 downregulated). The main differentially expressed metabolites during HMX stress were lipids and lipid-like molecules, and the most significantly affected metabolic pathway was purine metabolism. At the same time, the primary metabolic network of bacteria was disordered. These results confirmed that Bacillus aryabhattai has a high tolerance to HMX and can efficiently degrade HMX. The degradation mechanism involves the extracellular decomposition of HMX and transformation of the degradation products into intracellular purines, amino sugars, and nucleoside sugars that then participate in cell metabolism.


Assuntos
Bacillus , Azocinas , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...